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Summary

Colocalization analysis is the most common technique used for
quantitative analysis of fluorescence microscopy images. Sev-
eral metrics have been developed for measuring the colocaliza-
tion of two probes, including Pearson’s correlation coefficient
(PCC) and Manders’ correlation coefficient (MCC). However,
once measured, the meaning of these measurements can be
unclear; interpreting PCC or MCC values requires the ability
to evaluate the significance of a particular measurement, or
the significance of the difference between two sets of mea-
surements. In previous work, we showed how spatial auto-
correlation confounds randomization techniques commonly
used for statistical analysis of colocalization data. Here we use
computer simulations of biological images to show that the
Student’s one-sample t-test can be used to test the significance
of PCC or MCC measurements of colocalization, and the Stu-
dent’s two-sample t-test can be used to test the significance of
the difference between measurements obtained under different
experimental conditions.

Introduction

Fluorescence microscopy is one of the most widely used tools in
biomedical research, where it is used to determine the cellular
and subcellular localization of biological molecules. In general,
this involves a process in which the distribution of a fluores-
cent probe targeting a particular molecule is compared to that
of a second fluorescent probe that labels a specific population
of cells or subcellular compartment. Images of cells labelled
with both probes are collected and evaluated for the degree of
‘colocalization’ of the two probes, and interpreted in terms of
the function of the molecule. Colocalization is often evaluated
subjectively; for example, one protein is labelled with a probe
that fluoresces red, a second molecule is labelled with a probe
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that fluoresces green and colocalization of the two is visually
identified in the regions of the image that appear yellow. If
most of an image consists of yellow areas (where both proteins
are present) on a black background (where both proteins are
absent), the two proteins are clearly colocalized and no statis-
tical analysis is necessary. As an example, Figure 1 shows cells
that were incubated with both TexasRed-transferrin (red) and
Cy5-transferrin (green). Because both probes interact with the
same transferrin receptor, we would expect to see a high degree
of colocalization between the two. Indeed, the degree of overlap
is so complete that the case for colocalization of the two probes
is convincing even in the absence of a statistical analysis.

However, this situation is uncommon; more often colocal-
ization is less obvious than this, so that subjective evaluations
are inconclusive. It would therefore be desirable to have a sta-
tistical test to help decide whether two proteins are colocalized.
This requires two things: a statistical measure of colocaliza-
tion, and knowledge of the distribution of that measure when
the null hypothesis (that the proteins are not colocalized) is
true. If the observed value of the colocalization statistic is un-
likely under the null hypothesis, then the null hypothesis is
rejected and the alternative hypothesis, that the two proteins
are colocalized, is accepted. There are currently two widely ac-
cepted statistical measures of colocalization – Pearson’s corre-
lation coefficient (PCC) and Manders’ colocalization coefficient
(MCC) (Manders et al., 1993).

In PCC analyses, each pixel is considered one data point, and
the intensity of the red signal and green signal is measured at
each pixel. The correlation coefficient is then measured across
all pixels in the area of interest in an image. PCC values range
from –1 to +1, and they are simple to interpret. If there is
no association between the proteins, the expected PCC is 0. A
positive PCC means the two proteins are colocalized to some
extent; higher values of red are associated with higher values
of green. And a negative PCC value indicates that the distribu-
tions of the two probes are inversely related, with higher red
values being associated with lower green values; for example,
if one protein is restricted to the cell nucleus, and a second is
localized in the cell cytosol.
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Fig. 1. Living PTR cells incubated with TexasRed-transferrin (A) and Cy5-transferrin (B). Both probes bind to the transferrin receptor at the surface of
cells, from which they are internalized into early endosomes. The extensive colocalization of the two is shown in panel C, which shows the two images
merged together (red, TexasRed; green, Cy5). Panel D: the same image shown in panel C, after 90◦ rotation of the red image in each of the indicated
regions. Scale bar indicates length of 10 μm.

When N data points are statistically independent of each
other, the significance of a PCC value is tested by calculating
t = PCC

√
([N – 2]/[1 – PCC2]), which is t-distributed with

N – 2 degrees of freedom (Fisher, 1915; McDonald, 2009,
pp. 207–220). However, in images of cells, the pixels are not
statistically independent data points. Instead, they are auto-
correlated, meaning that each pixel is likely to have similar
values to its neighbouring pixels. This autocorrelation occurs
for two reasons. The first source of autocorrelation is the point-
spread function of the imaging system, which spreads the sig-
nal of a point source to several adjacent pixels in a properly
designed imaging system. The second source of autocorrela-
tion is the subcellular structure of the cell itself. The size of
subcellular structures is such that their images typically oc-
cupy a large number of pixels. Thus, if the probe fluorescence
is strong in one pixel in the image of the structure, it is also
likely to be strong in the adjacent pixels as well. It has long
been known that autocorrelation causes the expected distri-
bution of PCC under the null hypothesis to be much broader
than if the same number of data points were independent (Stu-
dent, 1914). Using the usual test of a PCC value for an image
that is 200 × 200 pixels (39 998 degrees of freedom), any PCC
greater than 0.01 or less than –0.01 would be significant at the
p < 0.05 level. When tested using this inappropriate method,
simulated data with no real colocalization can yield a ‘signif-
icant’ (p < 0.05) result almost all of the time. For example,
Figure 1D shows images of the cells that were incubated with
both TexasRed-transferrin (red) and Cy5-transferrin (green)
after rotating a circular region of the red channel by 90◦, a pro-
cedure that would result in random overlap between the two
channels. Even though this randomization should produce no
real correlation between red and green values, PCC values in
each cell are 0.17, which is highly significant under the usual
significance test for PCC. In simulated 200 × 200 pixel images
with red and green circular ‘objects’ positioned randomly, al-
most all of the images have PCC values greater than 0.01 or
less than –0.01 (Fig. 2), which could mislead an investiga-
tor into thinking that there was significant colocalization or
anticolocalization between almost any pair of proteins in a cell.

Fig. 2. Distribution of PCC values for simulated images with different
amounts of autocorrelation. Blue line, images with high autocorrelation
and a small number of objects (5 red and 5 green objects, diameter 21
pixels, example image A); green line, images with high autocorrelation
and a larger number of objects (50 red and 50 green objects, diameter 21
pixels, example image B); red line, images with moderate autocorrelation
(1000 red and 1000 green objects, diameter 5 pixels, example image C);
black line, images with no autocorrelation (each pixel with a random red
and green value, no PSF applied).

In one approach that has been developed to test the sig-
nificance of a colocalization measurement, the probability of
obtaining a particular measurement is estimated based upon
a distribution of values measured for ‘randomized’ data, in
which colocalization is measured between images after one
has been shifted relative to the other (van Steensel et al., 1996;
Fay et al., 1997; Ramı́rez et al., 2010) or between images from
different regions in the image (Lachmanovich et al., 2003). In
practice, it is frequently difficult to obtain enough mismatched
image regions to generate a useful random distribution. In
a second approach, the probability of obtaining a particu-
lar measurement is estimated based upon a distribution of
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values measured after one of the images has been divided into
blocks of pixels, which are then randomly distributed (Costes
et al., 2004). We have previously shown that this approach
can spuriously indicate colocalization even in random data, as
it reduces autocorrelation in the scrambled images, resulting
in ‘randomized’ data with far too many low correlation values
(Dunn et al., 2011).

Here we describe a much more straightforward method
for testing the significance of PCC and MCC values mea-
sured in colocalization studies. In studies of simulated data
and in examples of biological image data, we show how de-
riving estimates of variability from the measured variates
themselves can be used to reliably estimate probability val-
ues, which in turn can be used to evaluate the significance
of colocalization measurements. We also show that the two-
sample t-test (McDonald, 2009, pp. 118–122) can be used to
compare measurements of colocalization, an approach that
has been previously used (Wang et al., 2001; Babbey et al.,
2006; Rondanino et al., 2007; Khandelwal et al., 2008), but
without consideration of possible statistical artefacts. Here
we use simulated data to show that the two sample t-test
and the paired t-test give accurate results across a variety of
conditions.

Materials and methods

Simulation procedures

To test the accuracy of the one-sample t-test, a Pascal com-
puter program was written to simulate a square image, 200
by 200 pixels, with two colours, red and green. The image was
divided into background and objects. Background pixels were
given greyscale values of red and green chosen from a uniform
random distribution ranging from 0 to 1000, to simulate the
noise inherent in imaging (e.g. shot noise and detector noise).
Circular objects were then added to the background, with a
maximum value for each object chosen from a uniform ran-
dom distribution ranging from 1000 to 4095 (the maximum
greyscale value in a 12-bit image). The value of each pixel
within an object was chosen from a uniform random distribu-
tion ranging from 1000 to the maximum value for the object.
The number and size of the objects was varied to test the perfor-
mance of the one-sample t-test under different conditions. The
centre of each object was positioned at random in the image;
if this would make the object extend past the edge of the im-
age, the object was wrapped around to the other side. Red and
green objects were positioned independently to simulate the
null hypothesis of no colocalization. After the initial greyscale
values of the pixels were determined, a Gaussian point spread
function was applied using a kernel of 9 by 9 pixels and a stan-
dard deviation of 2. Examples of simulated images are shown
in Figures 2 and 3A.

For each image, PCC (McDonald, 2009, pp. 207–220) was
calculated between the greyscale values of the red and green

channels. The PCC was calculated for a set of six simulated
images, to simulate imaging a sample of six different cells.
The p value was calculated using a one-sample Student’s
t-test (Sokal & Rohlf, 2012, pp. 152–153) comparing the mean
PCC for each set of images with the value of 0 expected if there
were no colocalization. Because most studies are only inter-
ested in colocalization and would not test the significance of a
negative correlation value, one-tailed tests (considering only
positive mean PCC values) were done, and the proportion of
simulated p values that were below 0.05 was counted over
10 000 replicate sets of images for each combination of object
size and number of objects.

For each image, Mander’s correlation coefficients MCC1 and
MCC2 (Manders et al., 1993) were calculated, using a threshold
between ‘present’ and ‘background’ of 1000 greyscale units.
The expected MCC (proportion of green pixels above back-
ground for MCC1, proportion of red pixels above background
for MCC2) was subtracted from the observed MCC to yield an
MCCdiff for each image, and Student’s one-sample t-test was
used to compare the mean MCCdiff to 0.

To test the accuracy of the two-sample t-test, a second pro-
gram was written that performed simulations as described
above, except that PCC and MCCdiff values were calculated for
two sets of six images. The significance of the difference in
mean PCC or MCCdiff values was then calculated for each pair
of image sets, and the proportion of simulated p values that
were below 0.05 was counted over 10 000 replicate sets of
images for each combination of sample size, object size and
number of objects.

To test the accuracy of the paired t-test, a third program
was written that performed simulations as described above,
except that three colours (red, green and blue) were simulated
for sets of six images. The red–green PCC was compared with
the red–blue PCC using the paired t-test, and the proportion
of simulated p values that were below 0.05 was counted over
10 000 replicate sets of images for each combination of sample
size, object size and number of objects.

The source code for all three Pascal programs is available
(Supplementary material).

Fluorescence microscopy studies

Microscopy studies were conducted using PTR cells, MDCK
strain II cells transfected with both the human TfR and
the rabbit pIgR, previously described (Brown et al., 2000).
Transient expression of GFP–Rab10 and GFP–Rab10–Q68L,
immunofluorescence localization of Rab11a and endocytic
labelling with fluorescent transferrin were accomplished as
previously described (Babbey et al., 2006). All experiments
were conducted using a Perkin–Elmer Ultraview confocal mi-
croscope system mounted on a Nikon TE 2000U inverted
microscope, using Nikon 60× NA 1.2 water immersion
or Nikon 100×, NA 1.4 oil immersion planapochromatic
objectives.
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Fig. 3. Percentage of simulated images with p values less than 0.05 for three statistical tests: one-sample t-test (A and D), two-sample t-test (B and E)
and paired t-test (C and F). Results for PCC are on the top row, MCCdiff on the bottom row. Red lines are objects with a diameter of 21 pixels, green lines
a diameter of 5 pixels; the number of objects was varied to produce images with different percentages of the image above the background threshold.
Examples of images with 5, 25 and 100 objects of each color, diameter 21 pixels, are shown in A.

Digital image analysis

Image processing, including measurement of PCC was con-
ducted using Metamorph software (Universal Imaging, West
Chester, PA, U.S.A.). Images shown in figures were contrast
stretched to enhance the visibility of dim structures, with spe-
cific care taken to ensure that dim objects were never deleted
from an image. Montages were assembled and annotated us-
ing Photoshop (Adobe, Mountain View, CA, U.S.A.).

Results

Testing mean PCC measurements

The simulations calculate a PCC value for each of six images
and use the one-tailed, one-sample t-test to see whether the
mean PCC value is significantly greater than 0, and repeat this
for 10 000 sets of six images. Because the simulated objects are
placed randomly in the images, there is no real colocalization,
so a p value less than 0.05 is a false positive. A well-behaved
statistical test should give a p value less than 0.05 in about
5% of replicate simulations. The one-tailed, one-sample t-test
behaves well; about 5% of the sets of simulated images give a
false positive, for a broad range of number and size of objects

(Fig. 3A). When there is a small number of objects, so that
most of the image is background, the test is conservative; the
percentage of false positives is less than 5%. We have done
other simulations with other background levels, other object
sizes, other numbers of images, and a difference between the
numbers of red and green objects, and all yield a false positive
rate of about 5% or less (results not shown).

In Figure 1, we showed an example of a biological imag-
ing study for which the colocalization of the two probes
is so obvious that statistical analysis is unnecessary. In
Figure 4, we show fluorescence microscopy images that are
more typical of colocalization studies; the case for colocaliza-
tion is less obvious, and a test of statistical significance would be
useful.

The top three panels show fluorescence microscopy images
of the distribution of internalized TexasRed-transferrin (A) and
GFP–Rab10 (B) in living, polarized PTR cells. Although care-
ful examination reveals many examples of colocalization of the
two probes, the degree of colocalization is unclear. The merger
of the two images shown in panel C is no help; because of the
disparity in signal levels of the two probes, very few of the en-
dosomes take on the yellow colour reflecting the combination
of red and green probes. For the five cells in this field, PCC
measured 0.52, 0.20, 0.59, 0.62 and 0.60, suggesting some
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Fig. 4. Studies of colocalization of endosomal proteins. (A) TexasRed-transferrin internalized into endosomes of a living PTR cell, transiently expressing
GFP–Rab10 (B). (C) Merger of images shown in panels A and B (red, TexasRed; green, GFP). (D) TexasRed-transferrin internalized into endosomes of
a living PTR cell, transiently expressing GFP–Rab10–Q68L (E). (F) Merger of images shown in panels D and E (red, TexasRed; green, GFP). Scale bars
indicate length of 20 μm.

degree of colocalization of the two probes. The mean PCC is
0.51, a highly significant value according to a one-tailed t-test
(t = 6.46, 4 d.f., p = 0.0015).

Most colocalization studies only consider positive PCC val-
ues to be of interest, so a one-tailed t-test is appropriate. If
the investigator decides, before looking at the data, that either
colocalization or anticolocalization would be interesting, then
a two-tailed test should be used. It should be used with caution,
however. As shown by the blue line in Figure 2, when there
are a small number of objects, most images will have no over-
lapping objects and thus will have a slightly negative PCC,
whereas a small number of images will include overlapping
red and green objects and have a larger positive PCC. Under
these conditions, testing a small number of images can result
in more than 5% false positives (results not shown). When the
probability is small that an image includes overlapping red
and green images, a large number of images must be tested
before concluding that there is significantly less overlap than
predicted by the null hypothesis.

The bottom three panels of Figure 4 show fluorescence mi-
croscopy images of the distribution of TexasRed-transferrin
(D) and anti-Rab11 antibody (E) in polarized PTR cells, with
the merger of the two images shown in panel F. Unlike Rab10,
Rab11 associates with an apical compartment that is inacces-
sible to transferrin (Brown et al., 2000; Babbey et al., 2006).
Consistent with these previous studies, PCC analysis of the
distributions of transferrin and Rab11 in 36 cells yields a
mean PCC of –0.067. This mean PCC value is less than zero,

which might suggest that transferrin is excluded from Rab11-
containing compartments. However, the two-tailed t-test is
not significant (t = 0.91, 19 d.f., p = 0.37), so the data fail
to indicate either colocalization or anticolocalization between
transferrin and Rab11a.

Testing the difference between PCC measurements

In order to evaluate whether colocalization measurements
obtained from two samples (e.g. different cells, different pairs
of proteins or different experimental conditions) differ signifi-
cantly from one another, one uses a two-sample t-test to test
the null hypothesis that that the mean PCC values are equal
for two sets of cells. Simulations show that it gives accurate
estimates of the p value across a broad range of conditions
(Fig. 3B). It is somewhat conservative when there are very few
objects and almost all of the image is background.

The use of the two-sample t-test to test the effect of a pro-
tein mutation is demonstrated with the following example. In
previous studies of Rab10 (Babbey et al., 2006), we demon-
strated that a single amino acid change (Q68L) altered the
intracellular distribution such that Rab10 associated with
apical recycling endosomes located at the top of PTR cells.
This redistribution is apparent in a comparison of the associa-
tion of GFP–Rab10 and transferrin, shown in Figure 4C, with
the association of GFP–Rab10–Q68L and transferrin, shown
in Figure 5A and B. GFP–Rab10 and transferrin have a mean
PCC of 0.61, whereas GFP–Rab10–Q68L and transferrin have
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Fig. 5. Studies of colocalization of endosomal proteins. Living PTR cells with endosomes labelled with TexasRed-transferrin (A), GFP–Rab10–Q68L (B)
and Cy5-IgA (C). (D) Merger of images shown in panels A–C. Scale bar indicates length of 20 microns.

a mean PCC of 0.12. A two-sample t-test applied to test the
hypothesis that the Q68L mutation reduces the colocaliza-
tion of Rab10 with transferrin indicates a highly significant
difference (t = 10.73, 50 d.f., p < 10−13).

A potentially more powerful way to compare colocalization
of A and B to the colocalization of A and C would be through a
paired t-test (McDonald, 2009, pp. 191–197). In this case, cells
would be labelled for all three proteins, and the PCC value for
A with B is compared with the PCC value for A with C in each
cell. By eliminating cell–cell variability from the comparison,
this approach provides a more sensitive test of whether the
mean difference in PCC values is significantly different from 0.
The paired t-test has the null hypothesis that within each cell,
the PCC value for A with B is equal to the PCC value for A with
C. Like the two-sample t-test, it gives accurate estimates of the
p value for most conditions, and is conservative when most of
the image is background (Fig. 3C).

The application of the paired t-test is demonstrated in an
evaluation of the redistribution of Rab10 induced by the Q68L
mutation. As mentioned above, our previous studies indicated
that the Q68L mutation induced a redistribution of Rab10
from endosomes containing transferrin to a population of api-
cal recycling endosomes (Babbey et al., 2006). To test the
hypothesis, cells were transfected with Rab10–Q68L, and in-
cubated with both TexasRed-transferrin and Cy5-IgA, an en-
docytic ligand that labels the apical recycling endosomes. Con-
sistent with our hypothesis, a paired t-test determined that
Rab10–Q68L colocalizes significantly more with IgA than
with transferrin (t = 17.02, 29 d.f., p < 10−12).

Statistical analyses of MCC

An alternative, commonly used metric for measuring colo-
calization is MCC, which provides a measure of the fraction
of one probe that colocalizes with a second probe (Manders
et al., 1993). Although providing a colocalization metric that
some find easier to interpret than PCC, MCC analysis is more
challenging, as it is very sensitive to the threshold separat-
ing objects from background, which can be difficult to assign
(Dunn et al., 2011).

In terms of significance testing, MCC differs from PCC in that
the expected MCC value under the null hypothesis of no colo-
calization will vary from cell to cell. For example, if 60% of the
pixels in an image are above the threshold for the green probe,
the expected fraction of the red probe that is colocal with A
(MCC1) is 0.60; one would expect 60% of the pixels with red sig-
nal to fall on pixels with green signal, if distributed randomly.
This makes MCC values difficult to interpret in isolation: an
MCC1 of 0.60 would mean strong colocalization if only 5% of
the image was green, no association if 60% of the image was
green, and strong anticolocalization if 95% of the image was
green. Evidence for colocalization or anticolocalization comes
from the difference between the observed and expected MCC,
not from MCC by itself. Thus, any statistical test must analyze
the difference between the observed and expected MCC. We
therefore use simulated images to determine whether the one-
sample t-test, two-sample t-test and paired t-test can be used
to test the significance of the difference between observed and
expected MCC values (MCCdiff).

The results of simulations demonstrate that MCCdiff per-
forms very similarly to PCC. One-tailed one-sample t-tests are
accurate for most conditions, as the p value is less than 0.05
for about 5% of simulated images (Fig. 3D). When most of
the image is background, the t-test is conservative: less than
5% of simulated images have a p value less than 0.05. The
two-sample t-test and paired t-test of MCCdiff also give accu-
rate estimates of the p value across a broad range of conditions
(Figs. 3E and 3F). The similar results are not surprising as
MCCdiff is highly correlated with PCC (Fig. 6).

Discussion

Both of the statistics considered here – PCC and MCCdiff – can
be used as measures of colocalization in cell imaging studies.
Here we have shown that the one-tailed, one-sample t-test is an
effective method for statistically testing whether there is more
association between two proteins than expected by chance.
The PCC or MCCdiff is calculated for multiple images, and the
t-test is used to test whether the mean value is significantly
greater than zero. Our simulations show that if there is no
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Fig. 6. PCC and MCCdiff for 500 images with 1000 objects and object
diameter 5 pixels.

actual colocalization, the t-test would give a false positive result
(p < 0.05) about 5% or less of the time, as a well-behaved
statistical test should.

Most biological uses of one-sample t-tests use the two-tailed
p value, because a deviation from the null expectation in ei-
ther direction would be interesting. For example, if one was
studding asymmetry of arm length, one might use the one-
sample t-test to see if the average ratio of right arm to left arm
length was different from 1, and values of the right/left ra-
tio that were either greater than one (indicating longer right
arms) or less than one (longer left arms) could be important. In
contrast, colocalization studies generally address the question
of whether two molecules are colocal with each other, so a
negative correlation value and zero correlation have the same
interpretation, that there is no positive colocalization. This
makes the one-tailed test appropriate for most colocalization
studies. A one-tailed test is more powerful than a two-tailed
test when there is positive correlation, and when the image
is mostly background, a two-tailed test can yield an excessive
number of false positives; using a one-tailed test avoids this
artefact. In the rare cases where an investigator is interested
in determining whether the distributions of two molecules are
negatively correlated, either a one-tailed test that considers
both positive and zero correlation values to be evidence of
lack of anticolocalization, or a two-tailed test, can be used,
but a large sample size and caution in interpreting the results
are necessary due to the potential artefact caused by sparse
objects.

Although MCC provides a measure of colocalization (frac-
tional overlap) that some find more intuitively meaningful
than PCC (fraction of variance in A explained by its linear
relation with B), it is more difficult to use. Unlike PCC, MCC
requires estimation of threshold values that discriminate sig-
nal from background, and MCC values vary wildly depending

upon how this threshold is set (Dunn et al., 2011). Responsi-
ble use of MCC therefore requires an a priori, or at least con-
sistent, criterion for assigning the threshold value. Costes et
al. (2004) developed a method in which the threshold value
is set at the lower limit of the range of pixel values in which
a positive PCC value is obtained. This technique has been
implemented in a variety of image processing software pack-
ages, and works well in many, but not all cases (Dunn et al.,
2011).

It is important to keep in mind that a statistically significant
result should not be considered sufficient evidence of colocal-
ization by itself. A statistically significant association between
red and green signals could result from crosstalk, uneven il-
lumination or poor definition of the region of interest (such
as including extracellular space) (Dunn et al., 2011). Careful
microscopy and careful inspection of images and scatterplots
are important before concluding that proteins are actually
colocalized. On the other hand, failure to find a statistically
significant colocalization measure is compelling evidence that
any visually apparent colocalization is likely to result from
wishful thinking.

In addition to testing the significance of a colocalization
measurement, cell biologists often want to know whether
the strength of colocalization changes under different con-
ditions, or whether one pair of proteins is more strongly colo-
calized than another. For this the two-sample t-test works well,
whether applied to the PCC or MCCdiff. It is not surprising that
the two-sample t-test works well, as it is known to be robust to
violations of normality and differences in variance (Lix et al.,
1996) under most conditions. This robustness applies when
the sample sizes are equal, as in the simulations done here. If
the two sample sizes are markedly different, it is possible for
the two-sample t-test to give ‘significant’ results much too of-
ten (Lix et al., 1996). Experimenters should therefore strive to
have approximately the same number of cells for each sample
when performing a two-sample t-test.

When colocalization can be measured between two pairs
of proteins (such as A with B and A with C) in the
same cell, a paired t-test may be more powerful than the
two-sample t-test. This is especially true when the A–B colo-
calization and A–C colocalization vary widely among cells,
but the difference between the A–B and A–C colocalization is
consistent. Again, both PCC and MCCdiff perform well in paired
t-tests.

We have described a simple method for statistically evaluat-
ing measures of colocalization used in biological microscopy.
These methods take advantage of the fact that measures can be
obtained from multiple cells, supporting estimation of sample
variation from direct measurements. This situation contrasts
with that found in other scientific domains, where the question
of colocalization may need to be addressed in a single sample,
such as in astronomy or ecology. Modifications to the usual
test for PCC that correct for autocorrelation (Clifford et al.,
1989; Dutilleul, 1993) have been applied to ecological studies
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to assess the association of different ecological variables (Fortin
& Payette, 2002). We have conducted preliminary studies of
simulated image data indicating that the approach of Clifford
et al. (1989) provides reasonably accurate tests of significance
in studies of cells. However, it is difficult to imagine a legitimate
circumstance in which a single image would comprise a data
set in biological microscopy; thus we have not included these
results here.

One can imagine experiments in which more complicated
statistical tests could be applied to measures of colocalization,
such as analysis of variance (anova) and regression. Although
we have not simulated the broad variety of possible experi-
mental designs, our results here suggest that treating PCC or
MCCdiff as a variable to be analyzed like any other measure-
ment variable is a promising approach that may not suffer
from obvious statistical artefacts.
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